Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

A Study on transmutation of LLFPs using various types of HTGRs

Kora, Kazuki*; Nakaya, Hiroyuki*; Matsuura, Hideaki*; Goto, Minoru; Nakagawa, Shigeaki; Shimakawa, Satoshi*

Nuclear Engineering and Design, 300, p.330 - 338, 2016/04

 Times Cited Count:6 Percentile:49.05(Nuclear Science & Technology)

In order to investigate the potential of high temperature gas-cooled reactors (HTGRs) for transmutation of long-lived fission products (LLFPs), numerical simulation of four types of HTGRs were carried out. In addition to the gas-turbine high temperature reactor system "GTHTR300", a small modular HTGR plant "HTR50S" and two types of plutonium burner HTGRs "Clean Burn with MA" and "Clean Burn without MA" were considered. The simulation results show that an early realization of LLFP transmutation using a compact HTGR may be possible since the HTR50S can transmute fair amount of LLFPs for its thermal output. The Clean Burn with MA can transmute a limited amount of LLFPs. However, an efficient LLFP transmutation using the Clean Burn without MA seems to be convincing as it is able to achieve very high burn-ups and produce LLFP transmutation more than GTHTR300. Based on these results, we propose utilization of variety of HTGRs for LLFP transmutation and storage.

Journal Articles

Conceptual study of a plutonium burner high temperature gas-cooled reactor with high nuclear proliferation resistance

Goto, Minoru; Demachi, Kazuyuki*; Ueta, Shohei; Nakano, Masaaki*; Honda, Masaki*; Tachibana, Yukio; Inaba, Yoshitomo; Aihara, Jun; Fukaya, Yuji; Tsuji, Nobumasa*; et al.

Proceedings of 21st International Conference & Exhibition; Nuclear Fuel Cycle for a Low-Carbon Future (GLOBAL 2015) (USB Flash Drive), p.507 - 513, 2015/09

A concept of a plutonium burner HTGR named as Clean Burn, which has a high nuclear proliferation resistance, had been proposed by Japan Atomic Energy Agency. In addition to the high nuclear proliferation resistance, in order to enhance the safety, we propose to introduce PuO$$_{2}$$-YSZ TRISO fuel with ZrC coating to the Clean Burn. In this study, we conduct fabrication tests aiming to establish the basic technologies for fabrication of PuO$$_{2}$$-YSZ TRISO fuel with ZrC coating. Additionally, we conduct a quantitative evaluation of the security for the safety, a design of the fuel and the reactor core, and a safety evaluation for the Clean Burn to confirm the feasibility. This study is conducted by The University of Tokyo, Japan Atomic Energy Agency, Fuji Electric Co., Ltd., and Nuclear Fuel Industries, Ltd. It was started in FY2014 and will be completed in FY2017, and the first year of the implementation was on schedule.

2 (Records 1-2 displayed on this page)
  • 1